For the following sets of parameters, find the homogeneous solution \(y_h\) for eq. ¿eq:ioode? with the order \(n\) and coefficients \(a_i\) given.
- \(n = 2\), \(a_1 = -1\), \(a_0 = -2\)
- \(n = 2\), \(a_1 = 6\), \(a_0 = 9\)
- \(n = 2\), \(a_1 = 10\), \(a_0 = 34\)
- \(n = 5\), \(a_4 = -7\), \(a_3 = 32\), \(a_2 = -124\), \(a_1 = 256\), \(a_0 = -192\)
Note: the indices of the constants are arbitrary.
- \(y_h(t) = C_1 e^{2 t} + C_2
e^{-t}\)
- \(y_h(t) = C_1 e^{-3 t} + C_2 t e^{-3
t}\)
- \(y_h(t) = C_1 e^{(-5 + j 3) t} + C_2
e^{(-5 - j 3) t}\)
- \(y_h(t) = C_1 e^{3 t} + C_2 e^{2 t} + C_3 t e^{2 t} + C_4 e^{j4 t} + C_5 e^{-j4 t}\)
For the following sets of parameters, find the particular solution \(y_p\) for eq. ¿eq:ioode? with the order \(n\), coefficients \(a_i\), and forcing function \(f\) given.
- \(n = 2\), \(a_1 = -1\), \(a_0 = -2\), \(f(t) = 3\)
- \(n = 2\), \(a_1 = 6\), \(a_0 = 9\), \(f(t) = 5 e^{-3 t}\)
- \(n = 1\), \(a_0 = 2\), \(f(t) = 2 \cos(3 t)\)
- \(n = 3\), \(a_2 = 5\), \(a_1 = 16\), \(a_0 = 80\), \(f(t) = t+2\)
- \(y_p(t) = -\frac{3}{2}\)
- \(y_p(t) = \frac{5}{2} t^2 e^{-3
t}\)
- \(y_p(t) = \frac{4}{13} \cos(3 t) +
\frac{6}{13} \sin(3 t)\)
- \(y_p(t) = \frac{1}{80} t + \frac{9}{400}\)
For the following sets of parameters, find the specific solution
\(y\) for
eq. ¿eq:ioode? with the order \(n\), coefficients \(a_i\), forcing function \(f\), and initial conditions given.
Note that the homogeneous and particular solutions from problem 7.2 apply to these problems, so they need
not be re-derived.
- \(n = 2\), \(a_1 = -1\), \(a_0 = -2\), \(f(t) = 3\), \(y(0) = 2\), \(d y/d t|_{t=0} = 0\)
- \(n = 2\), \(a_1 = 6\), \(a_0 = 9\), \(f(t) = 5 e^{-3 t}\), \(y(0) = 0\), \(d y/d t|_{t=0} = 0\)
- \(n = 1\), \(a_0 = 2\), \(f(t) = 2 \cos(3 t)\), \(y(0) = 4\)
- \(n = 3\), \(a_2 = 5\), \(a_1 = 16\), \(a_0 = 80\), \(f(t) = t+2\), \(y(0) = 0\), \(d y/d t|_{t=0} = 1\), \(d^2 y/d t^2|_{t=0} = 0\)
- \(y(t) = -\frac{3}{2} + \frac{7}{3} e^{-t}
+ \frac{7}{6} e^{2 t}\)
- \(y(t) = \frac{5}{2} t^2 e^{-3
t}\)
- \(y(t) = \frac{48}{13} e^{-2 t} +
\frac{4}{13} \cos(3 t) + \frac{6}{13} \sin(3 t)\)
- \(y(t) = -\frac{9}{1025} e^{-5 t} - \frac{9}{656} \cos(4 t) + \frac{619}{2624} \sin(4 t) + \frac{1}{80} t + \frac{9}{400}\)
Online Resources for Section 7.6
No online resources.