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4.2 Estimation of Sample Mean and Variance

4.2.1 Estimation and Sample Statistics LINK
LU

The mean and variance definitions of section 3.7 and section 3.8 apply
only to a random variable for which we have a theoretical probability
distribution. Typically, it is not until after having performed many measurements
of a random variable that we can assign a good distribution model. Until then,
measurements can help us estimate aspects of the data. We usually start by esti-
mating basic parameters such as mean and variance before estimating a probability
distribution.
There are two key aspects to randomness in the measurement of a random

variable. First, of course, there is the underlying randomness with its probability
distribution, mean, standard deviation, etc., which we call the population statistics.
Second, there is the statistical variability that is due to the fact that we are estimating
the random variable’s statistics—called its sample statistics—from some sample.
Statistical variability is decreased with greater sample size and number of samples,
whereas the underlying randomness of the random variable does not decrease.
Instead, our estimates of its probability distribution and statistics improve.

4.2.2 Sample Mean, Variance, and Standard Deviation

The arithmetic mean or samplemean of ameasurandwith sample size# , represented
by random variable -, is defined as

G =
1
#

#∑
8=1

G8 .

If the sample size is large, G→<- (the sample mean approaches the mean). The
population mean is another name for the mean <- , which is equal to

<- = lim
#→∞

1
#

#∑
8=1

G8 .

Recall that the definition of the mean is <- =E [G].
The sample variance of ameasurand represented by randomvariable- is defined

as

(2
- =

1
# − 1

#∑
8=1

(G8 − G)2.

If the sample size is large, (2
-
→ �2

-
(the sample variance approaches the variance).

The population variance is another term for the variance �2
-
, and can be expressed
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as

�2
- = lim

#→∞

1
# − 1

#∑
8=1

(G8 − G)2.

Recall that the definition of the variance is �2
-
=E

[
(- −<-)2

]
.

The sample standard deviation of a measurand represented by random variable -
is defined as

(- =

√
(2
-
.

If the sample size is large, (-→ �- (the sample standard deviation approaches
the standard deviation). The population standard deviation is another term for the
standard deviation �- , and can be expressed as

�- = lim
#→∞

√
(2
-
.

Recall that the definition of the standard deviation is �- =

√
�2
-
.

4.2.3 Sample Statistics as Random Variables

There is an ambiguity in our usage of the term “sample.” It can mean just one mea-
surement or it can mean a collection of measurements gathered together. Hopefully,
it is clear from context.
In the latter sense, often we collect multiple samples, each of which has its own

sample mean - 8 and standard deviation (-8 . In this situation, - 8 and (-8 are them-
selves random variables (meta af, I know). This means they have their own sample

means - 8 and (-8 and standard deviations (- 8
and ((-8 .

The mean of means - 8 is equivalent to a mean with a larger sample size and
is therefore our best estimate of the mean of the underlying random process. The
mean of standard deviations (-8 is our best estimate of the standard deviation of
the underlying random process. The standard deviation of means (

- 8
is a measure

of the spread in our estimates of the mean. It is our best estimate of the standard
deviation of the statistical variation and should therefore tend to zero as sample size
and number of samples increases. The standard deviation of standard deviations

((-8 is a measure of the spread in our estimates of the standard deviation of the
underlying process. It should also tend to zero as sample size and number of samples
increases.
Let # be the size of each sample. It can be shown that the standard deviation of

the means (
- 8
can be estimated from a single sample standard deviation:

(
- 8
≈ (-8√

#
.
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This shows that as the sample size # increases, the statistical variability of the mean
decreases (and in the limit approaches zero).

4.2.4 Nonstationary Signal Statistics

The sample mean, variance, and standard deviation definitions, above, assume the
random process is stationary—that is, its population mean does not vary with time.
However, a great many measurement signals have populations that do vary with
time, i.e. they are nonstationary. Sometimes the nonstationarity arises from a “drift”
in the dc value of a signal or some other slowly changing variable. But dynamic
signals can also change in a recognizable and predictable manner, as when, say, the
temperature of a room changes when a window is opened or when a water level
changes with the tide.
Typically, we would like to minimize the effect of nonstationarity on the signal

statistics. In certain cases, such as drift, the variation is a nuissance only, but other
times it is the point of the measurement.
Two common techniques are used, depending on the overall type of nonstation-

arity. If it is periodic with some known or estimated period, the measurement data
series can be “folded” or “reshaped” such that the 8th measurement of each period
corresponds to the 8th measurement of all other periods. In this case, somewhat
counterintuitively, we can consider the 8th measurements to correspond to a sample
of size # , where # is the number of periods over which measurements are made.
When the signal is aperiodic, we often simply divide it into “small” (relative to

its overall trend) intervals over which statistics are computed, separately.
Note that in this discussion, we have assumed that the nonstationarity of the

signal is due to a variable that is deterministic (not random).

Example 4.2

Consider the measurement of the temperature inside a desktop computer chassis
via an inexpensive thermistor, a resistor that changes resistance with temperature.
The processor and power supply heat the chassis in a manner that depends on
processing demand. For the test protocol, the processors are cycled sinusoidally
through processing power levels at a frequency of 50 mHz for =) = 12 periods
and sampled at 1 Hz. Assume a temperature fluctuation between about 20 and
50 C and gaussian noise with standard deviation 4 C. Consider a sample to be the
multiple measurements of a certain instant in the period.

1. Generate and plot simulated temperature data as a time series and as
a histogram or frequency distribution. Comment on why the frequency
distribution sucks.
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2. Compute the sample mean and standard deviation for each sample in the

cycle.
3. Subtract the mean from each sample in the period such that each sample

distribution is centered at zero. Plot the composite frequency distribution
of all samples, together. This represents our best estimate of the frequency
distribution of the underlying process.

4. Plot a comparison of the theoretical mean, which is 35, and the sample
mean of means with an error bar. Vary the number of samples =) and
comment on its effect on the estimate.

5. Plot a comparison of the theoretical standard deviation and the sample
mean of sample standard deviations with an error bar. Vary the number of
samples =) and comment on its effect on the estimate.

6. Plot the sample means over a single period with error bars of ± one sam-
ple standard deviation of the means. This represents our best estimate of
the sinusoidal heating temperature. Vary the number of samples =) and
comment on the estimate.

We proceed in Python. First, load packages:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

Generate the Temperature Data The temperature data can be generated by
constructing an array that is passed to a sinusoid, then “randomized” by gaussian
random numbers.
Set a random seed for reproducible pseudorandom numbers.

np.random.seed(43)

Define constants with

f = 50e-3 # Hz
a = 15 # C
dc = 35 # C
fs = 1 # Hz
nT = 12 # number of sinusoid periods
s = 4 # C
np_ = int(fs / f + 1) # number of samples per period
n = nT * np_ + 1 # total number of samples

Generate the temperature data.
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t_a = np.linspace(0, nT / f, n)
sin_a = dc + a * np.sin(2 * np.pi * f * t_a)
noise_a = s * np.random.randn(n)
signal_a = sin_a + noise_a

Plot temperature over time

fig, ax = plt.subplots()
ax.plot(t_a, signal_a, 'o-', color='0.8', markerfacecolor='b', markersize=3)
plt.xlabel('time (s)')
plt.ylabel('temperature (C)')
plt.draw()
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Figure 4.1. Raw temperature data over time.

This is something like what we might see for continuous measurement data.
Now, the histogram.

fig, ax = plt.subplots()
ax.hist(signal_a, bins=30, density=True, alpha=0.5)
plt.xlabel('temperature (C)')
plt.ylabel('probability')
plt.draw()
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Figure 4.2. Raw temperature data histogram.

This sucks because we plot a frequency distribution to tell us about the random
variation, but this data includes the sinusoid.

Sample Mean, Variance, and Standard Deviation To compute the sample
mean � and standard deviation B for each sample in the period, we must “pick
out” the nT data points that correspond to each other. Currently, they’re in one
long 1 × n array signal_a. It is helpful to reshape the data so it is in an nT × np
array, which each row corresponding to a new period. This leaves the correct
points aligned in columns. It is important to note that we can do this “folding”
operation only when we know rather precisely the period of the underlying
sinusoid. It is given in the problem that it is a controlled experiment variable. If
we did not know it, we would have to estimate it, too, from the data.
Reshape data for sample mean, variance, and standard deviation calculations

with

signal_ar = signal_a[:-1].reshape((nT, np_))

Compute sample mean, variance, and standard deviations with

mu_a = np.array([np.mean(col) for col in signal_ar.T])
var_a = np.array([np.var(col) for col in signal_ar.T])
s_a = np.array([np.std(col) for col in signal_ar.T])
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Composite Frequency Distribution The columns represent samples. We want
to subtract the mean from each column. We use repmat to reproduce mu_a in nT
rows so it can be easily subtracted.

signal_arz = signal_ar - mu_a[np.newaxis,:]
x_a = np.linspace(-15, 15, 100)
pdfit_a = norm.pdf(x_a, loc=0, scale=s)
pdf_a = norm.pdf(x_a, loc=0, scale=s)

Now that all samples have the same mean, we can lump them into one big bin
for the frequency distribution.
Plot composite frequency distribution with a probability distribution fit and

the original probability distribution used to generate the data.

fig,ax = plt.subplots()
ax.hist(signal_arz.ravel(), bins=int(s * np.sqrt(nT)), density=True, alpha=0.5)
ax.plot(x_a, pdfit_a, 'b-', linewidth=2, label='pdf est.')
ax.plot(x_a, pdf_a, 'g--', linewidth=2, label='pdf')
plt.xlabel('Zero-mean temperature (C)')
plt.ylabel('Probability mass/density')
plt.legend()
plt.draw()
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Figure 4.3. Composite frequency distribution of zero-mean temperature data.

Means Comparison The sample mean of means is simply the following:

mu_mu = np.mean(mu_a)
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The standard deviation that works as an error bar, which should reflect how
well we can estimate the point plotted, is the standard deviation of themeans. It is
difficult to compute this directly for a nonstationary process. We use the estimate
given above and improve upon it by using the mean of standard deviations
instead of a single sample’s standard deviation.

s_mu = np.mean(s_a) / np.sqrt(nT)

Plot sample mean of means with an error bar as follows:

fig,ax = plt.subplots()
ax.bar(['$\overline{\overline{X}}$'], [mu_mu], yerr=s_mu, color='b', capsize=5)
plt.xlabel('Sample Mean of Means')
plt.draw()
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Figure 4.4. Sample mean of means with error bar.

Standard Deviations Comparison The sample mean of standard deviations is
simply the following:

mu_s = np.mean(s_a)

The standard deviation that works as an error bar, which should reflect how
well we can estimate the point plotted, is the standard deviation of the standard
deviations. We can compute this directly.

s_s = np.std(s_a)

Plot sample mean of standard deviations with error bar as follows:
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fig,ax = plt.subplots()
ax.bar(['$\overline{S_X}$'], [mu_s], yerr=s_s, color='b', capsize=5)
plt.xlabel('Sample Mean of Sample Standard Deviations')
plt.draw()
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Figure 4.5. Sample mean of sample standard deviations with error bar.

Plot a Period with Error Bars Plotting the data with error bars is fairly straight-
forward. The main question is “which standard deviation?” Since we’re plotting
the means, it makes sense to plot the error bars as a single sample standard
deviation of the means.
Plot sample means over a single period with error bars as follows:

fig,ax = plt.subplots()
ax.errorbar(t_a[:np_], mu_a, yerr=s_a, fmt='o-', capsize=2, label='sample mean', color='b')
t_a2 = np.linspace(0, 1 / f, 101)
ax.plot(t_a2, dc + a * np.sin(2 * np.pi * f * t_a2), 'r-', label='population mean')
plt.xlim([t_a[0], t_a[np_ - 1]])
plt.xlabel('Folded time (s)')
plt.ylabel('Temperature (C)')
plt.legend()
plt.show() # Show all the plots
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Figure 4.6. Sample means over a single period with error bars.

4.3 Confidence LINK
IU

One really ought to have it to give a lecture named it, but we’ll give it
a try anyway. Confidence is used in the common sense, although we
do endow it with a mathematical definition to scare business majors, who aren’t
actually impressed, but indifferent. Approximately: if, under some reasonable
assumptions (probabilistic model), we estimate the probability of some event to be
%%, we say we have %% confidence in it. I mean, business majors are all, “Supply
and demand? Let’s call that a ‘law,’ ” so I think we’re even.
So we’re back to computing probability from distributions—probability density

functions (PDFs) and probability mass functions (PMFs). Usually we care most
about estimating the mean of our distribution. Recall from the previous lecture
that when several samples are taken, each with its own mean, the mean is itself a
random variable—with a mean, of course. Meanception.
But the mean has a probability distribution of its own. The central limit theorem

has as one of its implications that, as the sample size # gets large, regardless of the
sample distributions, this distribution of means approaches the Gaussian distribution.
But sometimes I always worry I’m being lied to, so let’s check.
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